Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cartilage ; 13(2_suppl): 129S-142S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802263

RESUMO

OBJECTIVE: Articular cartilage-derived progenitor cells (ACPCs) are a potential new cell source for cartilage repair. This study aims to characterize endogenous ACPCs from healthy and osteoarthritic (OA) cartilage, evaluate their potential for cartilage regeneration, and compare this to cartilage formation by chondrocytes. DESIGN: ACPCs were isolated from full-thickness healthy and OA human cartilage and separated from the total cell population by clonal growth after differential adhesion to fibronectin. ACPCs were characterized by growth kinetics, multilineage differentiation, and surface marker expression. Chondrogenic redifferentiation of ACPCs was compared with chondrocytes in pellet cultures. Pellets were assessed for cartilage-like matrix production by (immuno)histochemistry, quantitative analyses for glycosaminoglycans and DNA content, and expression of chondrogenic and hypertrophic genes. RESULTS: Healthy and OA ACPCs were successfully differentiated toward the adipogenic and chondrogenic lineage, but failed to produce calcified matrix when exposed to osteogenic induction media. Both ACPC populations met the criteria for cell surface marker expression of mesenchymal stromal cells (MSCs). Healthy ACPCs cultured in pellets deposited extracellular matrix containing proteoglycans and type II collagen, devoid of type I collagen. Gene expression of hypertrophic marker type X collagen was lower in healthy ACPC pellets compared with OA pellets. CONCLUSIONS: This study provides further insight into the ACPC population in healthy and OA human articular cartilage. ACPCs show similarities to MSCs, yet do not produce calcified matrix under well-established osteogenic culture conditions. Due to extensive proliferative potential and chondrogenic capacity, ACPCs show potential for cartilage regeneration and possibly for clinical application, as a promising alternative to MSCs or chondrocytes.


Assuntos
Cartilagem Articular , Condrogênese , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/metabolismo , Humanos , Células-Tronco/metabolismo
2.
Trials ; 21(1): 842, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036661

RESUMO

BACKGROUND: Articular cartilage defects in the knee have poor intrinsic healing capacity and may lead to functional disability and osteoarthritis (OA). "Instant MSC Product accompanying Autologous Chondron Transplantation" (IMPACT) combines rapidly isolated recycled autologous chondrons with allogeneic MSCs in a one-stage surgery. IMPACT was successfully executed in a first-in-man investigator-driven phase I/II clinical trial in 35 patients. The purpose of this study is to compare the efficacy of IMPACT to nonsurgical treatment for the treatment of large (2-8 cm2) articular cartilage defects in the knee. METHODS: Sixty patients will be randomized to receive nonsurgical care or IMPACT. After 9 months of nonsurgical care, patients in the control group are allowed to receive IMPACT surgery. The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), and EuroQol five dimensions five levels (EQ5D-5 L) will be used to compare outcomes at baseline and 3, 6, 9, 12, and 18 months after inclusion. Cartilage formation will be assessed at baseline, and 6 and 18 months after inclusion using MRI. An independent rheumatologist will monitor the onset of a potential inflammatory response. (Severe) adverse events will be recorded. Lastly, the difference between IMPACT and nonsurgical care in terms of societal costs will be assessed by monitoring healthcare resource use and productivity losses during the study period. A health economic model will be developed to estimate the incremental cost-effectiveness ratio of IMPACT vs. nonsurgical treatment in terms of costs per quality adjusted life year over a 5-year time horizon. DISCUSSION: This study is designed to evaluate the efficacy of IMPACT compared to nonsurgical care. Additionally, safety of IMPACT will be assessed in 30 to 60 patients. Lastly, this study will evaluate the cost-effectiveness of IMPACT compared to nonsurgical care. TRIAL REGISTRATION: NL67161.000.18 [Registry ID: CCMO] 2018#003470#27 [EU-CTR; registered on 26 March 2019] NCT04236739 [ ClinicalTrials.gov ] [registered after start of inclusion; 22 January 2020].


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Condrócitos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante Autólogo , Resultado do Tratamento
3.
Eur Cell Mater ; 38: 51-62, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31402442

RESUMO

Meniscus regeneration is an unmet clinical need as damage to the meniscus is common and causes early osteoarthritis. The aim of the present study was to investigate the feasibility of a one-stage cell-based treatment for meniscus regeneration by augmenting a resorbable collagen-based implant with a combination of recycled meniscus cells and mesenchymal stromal cells (MSCs). Cell communication and fate of the different cell types over time in co-culture were evaluated by connexin 43 staining for gap junctions and polymerase chain reaction (PCR) to discriminate between meniscus cells and MSCs, based on a Y-chromosome gene. To define optimal ratios, human meniscus cells and bone-marrow-derived MSCs were cultured in different ratios in cell pellets and type I collagen hydrogels. In addition, cells were seeded on the implant in fibrin glue by static seeding or injection. Cellular communication by gap junctions was shown in co-culture and a decrease in the amount of MSCs over time was demonstrated by PCR. 20 : 80 and 10 : 90 ratios showed significantly highest glycosaminoglycan and collagen content in collagen hydrogels. The same statistical trend was found in pellet cultures. Significantly more cells were present in the injected implant and cell distribution was more homogenous as compared to the statically seeded implant. The study demonstrated the feasibility of a new one-stage cell-based procedure for meniscus regeneration, using 20 % meniscus cells and 80 % MSCs seeded statically on the implant. In addition, the stimulatory effect of MSCs towards meniscus cells was demonstrated by communication through gap junctions.


Assuntos
Comunicação Celular , Menisco/citologia , Células-Tronco Mesenquimais/citologia , Regeneração , Alicerces Teciduais/química , Idoso , Células Cultivadas , Técnicas de Cocultura/métodos , Colágeno/química , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Junções Comunicantes/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hidrogéis/química , Masculino , Menisco/metabolismo , Menisco/fisiologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Transplante de Células-Tronco/métodos
4.
Osteoarthritis Cartilage ; 27(1): 34-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243948

RESUMO

BACKGROUND: Regenerative Medicine (RM) techniques aimed at the musculoskeletal system are increasingly translated to clinical trials and patient care. This revolutionary era in science raises novel ethical challenges. One of these challenges concerns the appropriate choice of the comparator in (randomized controlled) trials, including the ethically contentious use of sham procedures. To date, only general guidelines regarding the choice of the comparator exist. OBJECTIVE: To provide specific guidelines for clinical trial comparator choice in musculoskeletal RM. METHODS: In this manuscript, we discuss the ethics of comparator selection in RM trials. First, we make a classification of RM interventions according to different health states from disease prevention, return to normal health, postponing RM treatment, supplementing RM treatment, substituting RM treatment, improving RM outcome, and slowing progression. Subsequently, per objective, the accompanying ethical points to consider are evaluated with support from the available literature. RESULTS: a sham procedure is demonstrated to be an ethically acceptable comparator in RM trials with certain objectives, but less appropriate for musculoskeletal RM interventions that aim at preventing disease or substituting a surgical treatment. The latter may be compared to 'standard of care'. CONCLUSION: From a scientific perspective, choosing the correct comparator based on ethical guidelines is a step forward in the success of musculoskeletal RM.


Assuntos
Doenças Musculoesqueléticas/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto/ética , Medicina Regenerativa/ética , Progressão da Doença , Ética em Pesquisa , Humanos , Consentimento Livre e Esclarecido/ética , Seleção de Pacientes/ética , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Projetos de Pesquisa , Medição de Risco/métodos , Transplante de Células-Tronco/ética
5.
Bone Joint Res ; 5(11): 560-568, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881439

RESUMO

OBJECTIVES: Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. MATERIALS AND METHODS: Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. RESULTS: No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. CONCLUSION: For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised.Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560-568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3.

6.
Osteoarthritis Cartilage ; 23(1): 143-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25241243

RESUMO

OBJECTIVE: The objective of this study was to investigate the feasibility of arthroscopic airbrush assisted cartilage repair. METHODS: An airbrush device (Baxter) was used to spray both human expanded osteoarthritic chondrocytes and choncrocytes with their pericellular matrix (chondrons) at 1 × 10(6) cells/ml fibrin glue (Tissucol, Baxter) in vitro. Depth-dependent cell viability was assessed for both methods with confocal microscopy. Constructs were cultured for 21 days to assess matrix production. A controlled human cadaveric study (n = 8) was performed to test the feasibility of the procedure in which defects were filled with either arthroscopic airbrushing or needle extrusion. All knees were subjected to 60 min of continuous passive motion and scored on outline attachment and defect filling. RESULTS: Spraying both chondrocytes and chondrons in fibrin glue resulted in a homogenous cell distribution throughout the scaffold. No difference in viability or matrix production between application methods was found nor between chondrons and chondrocytes. The cadaveric study revealed that airbrushing was highly feasible, and that defect filling through needle extrusion was more difficult to perform based on fibrin glue adhesion and gravity-induced seepage. Defect outline and coverage scores were consistently higher for extrusion, albeit not statistically significant. CONCLUSION: Both chondrons and chondrocytes can be evenly distributed in a sprayed fibrin glue scaffold without affecting viability while supporting matrix production. The airbrush technology is feasible, easier to perform than needle extrusion and allows for reproducible arthroscopic filling of cartilage defects.


Assuntos
Artroscopia , Cartilagem Articular/cirurgia , Condrócitos/transplante , Adesivo Tecidual de Fibrina/administração & dosagem , Aerossóis , Idoso , Idoso de 80 Anos ou mais , Cadáver , Transplante de Células/métodos , Estudos de Viabilidade , Feminino , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/métodos , Alicerces Teciduais
7.
Osteoarthritis Cartilage ; 22(11): 1910-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151084

RESUMO

OBJECTIVE: Interactions between chondrocytes and their native pericellular matrix provide optimal circumstances for regeneration of cartilage. However, cartilage diseases such as osteoarthritis change the pericellular matrix, causing doubt to them as a cell source for autologous cell therapy. METHODS: Chondrons and chondrocytes were isolated from stifle joints of goats in which cartilage damage was surgically induced in the right knee. After 4 weeks of regeneration culture, DNA content and proteoglycan and collagen content and release were determined. RESULTS: The cartilage regenerated by chondrons isolated from the damaged joint contained less proteoglycans and collagen compared to chondrons from the same harvest site in the nonoperated knee (P < 0.01). Besides, chondrons still reflected whether they were isolated from a damaged joint, even if they where isolated from the opposing or adjacent condyle. Although chondrocytes did not reflect this diseased status of the joint, chondrons always outperformed chondrocytes, even when isolated from the damaged joints (P < 0.0001). Besides increased cartilage production, the chondrons showed less collagenase activity compared to the chondrocytes. CONCLUSION: Chondrons still outperform chondrocytes when they were isolated from a damaged joint and they might be a superior cell source for articular cartilage repair and cell-induced cartilage formation.


Assuntos
Regeneração Óssea , Cartilagem Articular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Condrócitos/transplante , Articulação do Joelho/patologia , Osteoartrite do Joelho/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Cabras , Osteoartrite do Joelho/terapia
8.
Osteoarthritis Cartilage ; 22(1): 145-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269634

RESUMO

OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were transfected with a miRNA precursor for hsa-miR-148a or a miRNA precursor negative control. After 3, 7, 14 and 21 days, real-time PCR was performed to examine gene expression levels of aggrecan (ACAN), type I, II, and X collagen (COL1A1, COL2A1, COl10A1), matrix metallopeptidase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and the serpin peptidase inhibitor, clade H (heat shock protein 47), member 1 (SERPINH1). After 3 weeks, DNA content and proteoglycan and collagen content and release were determined. Type II collagen was analyzed at the protein level by Western blot. RESULTS: Overexpression of hsa-miR-148a had no effect on ACAN, COL1A1 and SERPINH1 gene expression, but increased COL2A1 and decreased COL10A1, MMP13 and ADAMTS5 gene expression. Luciferase reporter assay confirmed direct interaction of miR-148a and COL10A1, MMP13 and ADAMTS5. The matrix deposited by the miR-148a overexpressing cells contained more proteoglycans and collagen, in particular type II collagen. Proteoglycan and collagen release into the culture medium was inhibited, but total collagen production was increased. CONCLUSION: Overexpression of hsa-miR-148a inhibits hypertrophic differentiation and increases the production and deposition of type II collagen by OA chondrocytes, which is accompanied by an increased retention of proteoglycans. Hsa-miR-148a might be a potential disease-modifying compound in OA, as it promotes hyaline cartilage production.


Assuntos
Cartilagem Articular/patologia , Condrócitos/metabolismo , MicroRNAs/fisiologia , Osteoartrite do Joelho/metabolismo , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Proteína ADAMTS5 , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/patologia , Colágeno Tipo II/biossíntese , Colágeno Tipo II/genética , Colágeno Tipo X/biossíntese , Colágeno Tipo X/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 13 da Matriz/genética , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Proteoglicanas/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...